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a b s t r a c t

The geometric characteristics of double-impulse cotangential transfers between coplanar elliptic orbits,
which are used to investigate of such transfers, are given. Each argument is accompanied by the devel-
opment of a corresponding geometric algorithm which illuminates the mechanical problem from a
geometric point of view, imparting the clarity to it which is characteristic of a geometric concept. A
general method of investigation is developed based on a comparison of the behaviour of a cotangential
transfer with an excentre of the transfer orbit which is joined to the excentres of the given elliptic orbits
(an excentre is a circle constructed on the major axis of the ellipse which is its diameter). The cotangential
transfer trajectory parameters and the values of the velocity pulses controlling the motion of the space-
craft during the transfer are determined in explicit form and depend on the parameters of the specified
orbits and the true anomaly of the point of application of the first velocity pulse.

© 2010 Elsevier Ltd. All rights reserved.

Problems of designing interorbital space flights1–4 arise when carrying out the optimum transfer of a spacecraft from one orbit to
another more suitable orbit. However, selecting the requisite transfer orbits between the coplanar orbits from the immense set is a difficult
problem. It has been established that the manoeuvring of a spacecraft with minimum fuel expenditure is equivalent to manoeuvring with
minimum overall changes in the orbital velocity.1,5,6 The mathematical problem arising here is to determine in advance precisely which
velocity pulses have to be imparted to the spacecraft and when this should be done in order that its orbit changes in the required manner.
However, the problem of finding the flight trajectory between coplanar orbits for which the cost of the characteristic velocity is a minimum
has still not been solved in general form.1,7

In the overwhelming majority of papers on celestial mechanics, the investigation of interorbital flights begins with a detailed treatment
of the problem of the flight between two circular orbits. The particular form of such transfers in the shape of an ellipse touching both orbits
was proposed by Hohmann in 1925. Analytical and numerical methods have been developed for other types of transfers, some of which
are based on the variational calculus and the theory of approximate computations. Another, quite extensive part combines methods which
have been specially developed using the theory of optimal control. The application of variational methods to optimization problems leads
to two-point boundary value problems with all the difficulties invovled in solving them. When solving problems by these methods, the
orbits considered are replaced by a set of points covering them discretely, and possible flight trajectories from the set of points of the initial
orbit to the set of points of the final orbit are analysed. The optimal transfer orbit (OTO) is chosen by comparing the different versions of
the flight considered from the point of view of the overall energy expenditure.2

However, the selected version may turn out to be considerably worse than optimal. The reason for this is concealed in the fact that it is
impossible to solve problems involving the exact and complete description of the trajectory of the optimal transfer by the variational method
since it is even impossible to consider all the transfer orbits and to compare them with one another with respect to fuel consumption,
and it is necessary to restrict the treatment to just a small number of randomly selected versions. Attempts to determine the absolutely
optimal flight trajectory between specified coplanar orbits by an approximate method are therefore not promising.

Numerical analysis of the research carried out shows that the OTO at the points of application of the pulses comes into contact with
the specified orbits2 and that the number of such cotangential transfers is infinite. The opinion5 that a cotangential transfer is very close
to optimal for any initial point of the transfer is erroneous since these transfers differ in the amount of energy consumed.
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Fig. 1.

In spite of the cotangentialness of the OTO in existing papers, on the one hand, a set of transfers via intersecting transfer orbits which
cannot claim to be OTOs is considered and, on the other hand, an infinite set of touching transfer orbits, each of which could turn out to be
the required OTO, is dropped out of the treatment. Attempts to construct the exact OTO among coplanar orbits of general form, based on
known methods of celestial mechanics, have not led to the proper result. The main reason for this failure is the fact that the inspection of
the transfer orbits is carried out using both transfer points simultaneously. Moreover, there is no algorithm for choosing the OTO from all
possible transfer orbits. It can be concluded that these difficulties can be removed if the OTO is considered in the system of all cotangential
transfers between the specified orbits.

Since a unique cotangential flight orbit passes through each point of the initial orbit, the problem of finding the optimal solution reduces
to finding the initial point of the transfer for which the corresponding cotangential transfer would be the required optimal flight orbit. It
follows from this that, for a cotangential transfer, only the initial transfer point is independent and the point of application of the second
pulse must not be specified as an initial condition since it can be determined by construction as a function of the point of application of
the first pulse. No attention has been paid to this fact before.

A well known property of an ellipse and an Euclidean algorithm are the foundation of the development of a geometric algorithm which
reproduces a number of functions analogous to the motion of bodies in the case of a cotangential transfer between elliptic orbits and
enables one to establish the relation between the parameters of these orbits and the flight orbit.

Consider an ellipse with foci F1 and F2 and a major axis of length 2a (Fig. 1). On the continuation of the radius vector F1M, we mark off
a segment MD = MF2. Then, F1D = 2a. We join point D to the second focus F2 and draw the height MK in the isosceles triangle F2MD. It is
obvious that MK will both be the bisectrix of the angle M and the median, that is, the line MK will be a tangent to the ellipse at the point M
and the equality DK = KF2 holds. We now join point K to the centre O of the ellipse. Since the segment KO is the middle line of the triangle
F1DF2, we have KO = F1D/2 = a.

Since the sum of the distances from the foci to any point of an ellipse is constant, it is obvious that the points D and K will move when
the point M moves. The point D will move along a circle with centre F1 and radius 2a (along the deferent according to the terminology of
ancient astronomers) and the point K moves along a circle with centre O and radius a (along the excentre).

Before investigating problems associated with the construction and study of a cotangential transfer between coplanar orbits, we will
consider the relation between the flight orbit and the separate specified orbits. It is obvious that, in order to understand this relation, it is
necessary to investigate the family of trajectories emerging from a common point with the same direction of the initial velocity. It is well
known that subfamilies of ellipses, hyperbolae and a parabola8 are included in this family of trajectories. These curves, by definition, have
a common focus, a common point and tangent to this point.

The aim of this paper is to find a second common property of the above mentioned curves which is important in the subsequent
investigations.

The force centre F1 and the initial position M0 of the second point mass, which moves under the action of the attraction of the force
centre F1 are shown in Fig. 2. Suppose the initial velocity is directed at an angle ˛0 to the radius vector r0. The straight line f, which is the
geometric locus of the foci F2 corresponding to different values of the initial velocity V0, is drawn through the point M0. The straight line f
makes an angle ˛0 with the specified tangent since this tangent makes equal angles with the radius vectors M0F1 and M0F2. The position
of the focus F2 on the line f is uniquely defined by the value of modulus of the initial velocity V0. The middle O of the interfocal distance
F1F2 is the centre of the current trajectory of the family of trajectories considered with the same direction of the initial velocity. We draw
a straight line parallel to the line f through the point O which passes through the middle O0 of the radius vector F1M0 and intersects the
direction of the initial velocity V0 at the point S. From the isosceles triangle M0O0S with angles near the base ∠O0M0S =∠O0SM0 = ˛0, we
find that M0O0 = O0S = r0/2.

According to the definition of an ellipse, we have
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Fig. 2.

Since the segment OO0 is the middle line of the triangle F1M0F2, the semi-major axis a of the ellipse can be determined by the equality

from which, when account is taken of the equality F1O0 = O0S = r0/2, we obtain that the segment OS gives the value of the semi-major
axis a of the trajectory for all values of the initial velocity V0.

This means that all the circles of the excentres of a trajectory of the family investigated pass through the point S on the line of their
centres. These circles form a parabolic bundle of circles with centre S. If the initial velocity V0 is equal to zero, we obtain an elliptic-type
rectilinear motion along the line M0F1. The circle with centre O0 and radius O0S passes through the points M0 and F1 and the angle F1SM0
will be a right angle, since it is based on the diameter F1M0 of the excentre circle with zero initial velocity. If the centre O departs to infinity
along the line SO(V0 =

√
2g0r0), the excentre circle decomposes into two lines, one of which is an ideal line in the plane of the motion

while the second is perpendicular to the line of the centres OS and passes through the point S. In this case, we obtain a parabolic trajectory.
When V0 >

√
2g0r0, we have a subfamily of hyperbolic trajectories, the centre of which approaches the point S from the right-hand

side as the initial velocity increases.
We now consider the problem of using a certain additional property of the family of trajectories with the same direction of the initial

velocity to construct cotangential transfers. Since a cotangential transfer orbit touches the initial and the final orbits, it follows from what
has been described above that, in this case, the excentre of the transfer orbit will simultaneously touch the excentres of the specified orbits,
that is, their coupling holds.

Suppose the centre of the attractive forces F1 and the elliptic orbits around the power centre F1 are given (Fig. 3). The parameters a1c1
and a2c2 of these orbits and the angle � between their major axes are known. Consider a cotangential transfer when the transfer orbit
touches the initial orbit at the point M1, and the final orbit at the point M2. The second focus F2 of the flight orbit is the point of intersection
of the local lines M1F21 and M1F22, where F21 and F22 are the second foci of the specified elliptic orbits.

Since the centre O of the transfer orbit is the middle of the interfocal distance F1F2, the geometric locus of the centres of all the cotangential
transfers can be considered as a figure which is centrally-similar to a focal ellipse. Here, the centre of similarity is the attracting centre
F1 and the coefficient of similarity is equal to 1/2. It can then be concluded that, in the case of a cotangential orbital transfer between
non-intersecting elliptic orbits, the geometric locus of the centre of the transfer orbits is an ellipse (the central curve), the foci of which
coincide with the centres of the specified orbits and the semi-major axis is equal to half the difference between the semi-major axes of
these orbits.

The above mentioned properties of cotangential transfers play a considerable large role in the subsequent investigations. We shall
show that the problem of designing a cotangential transfer with a pair of compasses and a ruler, which provides a method for obtaining
an analytical solution, is solvable using these properties.

With the aim of initially constructing cotangential transfers by the geometric route, we will develop the relations between the start
and the finish of such transfers. Suppose the attracting centre F1 and the elliptic orbits (a1c1) and (a2c2) around it as well as the angle �
between the major axes of the orbits are given. The points F21 and F22 are their foci, and O1 and O2 are their centres (Fig. 4). The centre of
the focal ellipse is the middle O3 of the interfocal distance F21F22. It is now necessary to draw two circles for each of the above mentioned
ellipses, one of which with the centre of the ellipse being considered and a radius equal to its semi-major axis, and a second with its centre
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Fig. 3.

Fig. 4.
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at one of the foci of this ellipse and with the radius of its major axis. This means that it is necessary to draw six circles with the parameters

We begin the subsequent constructions by choosing the initial point M1 of the cotangential transfer. To do this, we draw a line F1D1
through the attracting centre F1 at an angle � measured from the radius vector of the perigee of the initial orbit and determine the point
D1 of intersection of this line with the circle (F1,2a1). We then draw a line D1F21 and, through the point K1 of its intersection with the circle
(O1, a1), we draw a second line perpendicular to the line D1F21. This second line, on intersecting the line F1D1, gives the required point M1
in the initial orbit.

We now determine the position of the second focus F2 of the flight orbit in the focal ellipse. To do this, we join the point M1 of the initial
orbit with its second focus F21 and construct the point D3 of intersection of the line M1F21 with the circle F21, (2(a2−a1)). We draw a line
D3F22 through the point D3 and, through the point K3 of its intersection with the circle (O3, a2−a1), we draw a second line perpendicular
to the line F22D3. This second line, on intersecting the line F21D3 gives the required focus F2 of the flight orbit.

The point M2 where the flight orbit touches the final orbit is determined as follows. We first join the second focus F22 of the final orbit
with the second focus of the flight orbit by a straight line and determine its point of intersection D2 with the circle (F22, 2a2). We next join
the point D2 to the attracting centre F1 by a straight line and draw a second line, which is perpendicular to the line (O2,a2), through its
point of intersection S2 with the circle F1D2. This second line, on intersecting the line F22D3, determines the required point M2. We draw
the lines F1F2 and O2S2 which, on intersecting, determine the required centre O of the flight orbit and the magnitude of its semi-major axis
a = OS2. We now join the centre O1 of the initial orbit with the centre O of the flight orbit and determine its point of intersection with the
initial excentre at the point of contact S1 of the circles (O1,a1) and (O, a1 = OS1 = OS2).

Hence, using a pair of compasses and a ruler, the required orbit of cotangential transfer and its points of contact with the specified
orbits can be successfully constructed. All the cotangential transfers arise for all possible positions of the point M1, that is, the position of
the point M1 plays the role of a geometric parameter. It is well known that, if the possibility of constructing the required figure using a pair
of compasses and a ruler is proved, then the lengths of all the segments, appearing in the construction, can be expressed in terms of the
lengths of the specified segments using a finite number of elementary actions and the operation of extracting a square root.9 This provides
grounds for hoping that the explicit dependences of the parameters of the transfer orbit on the parameters of the specified orbits can be
obtained. Fixing the value of the true anomaly � of the point M1, we obtain a completely defined flight orbit. If. however, the parameter
� changes continuously, we obtain a family of such orbits, and it is possible to write expressions for the parameters of the flight orbit in
the form of corresponding functions of the argument �. This means that functions, which depend on the true anomaly � of the point M1,
rather than the values, will now be the unknowns.

The preliminary calculations carried out obove show that, by choosing the true anomaly � of the point of contact M1 of the flight orbit
with the initial orbit as the independent variable, complex relations for the parameters of the flight orbit are obtained. In order to overcome
this difficulty, it was decided to introduce a new independent variable. Bearing in mind that the centre of the transfer orbit is also the
centre of its excentre, the radius of which is equal to the semi-major axis of the required flight orbit, the angle �, which determines the
position of the point of contact S1 of the excentres of the transfer and initial orbits, can be taken as the independent variable.

Suppose the centre of the attracting forces F1 and the elliptic orbits around the force centre F1 are given (Fig. 5). The parameters (a1,c1)
and (a2,c2) of these orbits and the angle � between their major axes are known. The points F21 and F22 are the second foci of the specified
orbits and O1 and O2 are their centres. The centre of the central curve is the middle O3 of the segment O1O2. We now draw circles with the
parameters

We begin the further construction by choosing of the point S1 on the excentre of the initial orbit. The angle � of rotation of the radius
O1S1 of the initial excentre is measured from the line, parallel to the F1F22 axis, of the final elliptic orbit and passes through the centre O1
of the initial elliptic orbit. We now determine the point of the intersection D1 of the line F1S1 with the circle (F21,2a1). In order to construct
the starting point of transfer M1, we draw the line D1F21 and then a line perpendicular to the line F1D1 through the point S1. This last line,
on intersecting the line F21D1, gives the required point M1 in the initial orbit (Fig. 4).

We now determine of the position of the centre O of the flight orbit. To do this, we first construct the point of intersection D3 of the line
O1S1 with the circle (O1,a1−a1). We draw the line D3O2 and, through its point of intersection K3 with the circle (O3, (a2−a1)/2), a second
line perpendicular to the line D3O2. This second line, on intersecting the line O1D3, gives the required centre O of the excentre of the flight
orbit and its radius a = 0S1. The lines of the centres O2O, on intersecting the excentre of the final orbit, determine the point S2 where it
touches the excentre of the flight orbit.

The point M2, where the flight orbit touches the final orbit, is determined in the following way. We first draw the line F1S2, determine
its point of intersection D2 with the circle (F22,2a2) and this point is joined by a straight line to the second focus F22 of the second orbit. A
line, which is perpendicular to the line F1D2, is drawn through the point S2 which, on intersecting the line F22D2, determines the required
point M2. The second focus of the flight orbit coincides with the point of intersection of the lines F22D2 and F1O.

It should be pointed out that the specified orbits and flight orbit, which are shown in Fig. 4, are not presented in the algorithm which
has been developed (Fig. 5). This is explained by the fact that the specified and transfer orbits are replaced by their excentres with the aim
of simplifying the mathematical calculations. All the notation is the same in both figures.

In order to solve the problem analytically, we introduce a rectangular system of coordinates with origin at the attracting centre F1 and
with axis F1y passing through the second focus F22 of the final orbit. We now determine the coordinates of the point D3

Taking the equalities
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Fig. 5.

into account, after some reduction we obtain

(1)

The distance between the centres O1 and O2 is determined from the triangle F1O1O2 using the cosine theorem

(2)

The distance between the points O2(0,c2) and D3 is determined using Pythagoras’ theorem

from which, after taking account of equalities (1) and (2) and some reduction, we obtain

(3)

Using the cosine theorem, from the triangle O1O2D3 with sides O1O2 = s, O1D3 = a2−a1 and angle � between them we find a second
expression for the length of the segment O2D3, which differs from expression (3) by the replacement of the quantity � by 2scos�. Equating
these expressions, we obtain

(4)

Using the cosine theorem and taking account of equalities (2) and (4), from the triangle O1O2O with the sides

and an angle � between them, we find the length of the segment OO2

(5)
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Taking account of this equality, we determine the value of the radius of the excentre of the flight orbit

(6)

as well as the distance between the centres O1 and O of the initial and transfer orbits

(7)

and the coordinates of the point O, that is, of the centre of the flight orbit

(8)

Using the cosine theorem, from the triangle F1O1O with sides F1O1 = c1, F1O = c and angle F1O1O = �−∠F1O1S1 = �−(� + �) we find the
square of the focal distance of the flight orbit

(9)

from which, using equality (7), we find

(10)

We will now determine the position of the apse of the flight trajectory. Since the point O is the centre of the flight orbit and the point
F1 is its focus, the slope of the line of the apses of the flight trajectory to the x axis is given by the formula tg� = Y0/X0, whence, after taking
account of equalities (8) and some reduction, we obtain

(11)

Using the cosine theorem, from the triangle F1OO2 with sides F1O2 = c, F1O2 = c2 and angle F1O2O = ˇ we find

(12)

Equating the right-hand sides of equalities (9) and (12), we obtain

(13)

For the subsequent investigations, it is necessary to determine the value of the radius vectors r1 and r2 of the points M1 and M2 where the
flight orbit touches the initial and the final orbits respectively. Using the cosine theorem, from the triangle F1F21M1 with sides F1F21 = 2c1,
F1M1 = r1, F21M1 = 2a1−r1 and angle F1F21M1 = � + � we find

whence, after simplifications, we obtain

(14)

Similarly, from the triangle F1F22M2 with sides F1F22 = 2c2, F1M2 = r2, F22M2 = 2a2−r2 and angle F1F22M2 = � we obtain

(15)

The value of cos � is given by equality (13).
We will now determine the true anomalies ϑ1 and ϑ2 of the transition points M1 and M2, measured from the corresponding pericentres

of the specified orbits. The values of the radius vectors r1 and r2 of the points M1 and M2 will be8

(16)

From equalities (14) - (16), we obtain

(17)
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The angular distance in the flight trajectory is given by the equality

The true anomalies of the initial point M1 and the final point M2 are given by equalities (17).
The magnitudes of the semi-axes a1,a2 and a are given by the equalities8

(18)

where g1 and g2 are the values of the Newtonian accelerations at the distances r1 and r2 respectively. From this, after some reduction, we
obtain the moduli of the velocities V1,V2V11 and V21 of the spacecraft during its motion along the specified orbits and the flight orbit

(19)

The magnitude of the velocity increment �V1 can be determined, taking account of equalities (19), as the difference in the velocities
V11 and V1 of the spacecraft at the point M1 which are required for motion along the flight orbit and the initial orbit:

(20)

Taking account of the equalities (19) and the condition g2r2 = g1r1
2/r2, the value of the velocity increment �V2 can be determined as

the difference in the velocities V2 and V21 of the spacecraft at the point M2 required for the motion along the final and transition orbits:

(21)

The total velocity increment to perform the manoeuvre is given by the equality

(22)

Hence, the explicit dependences of the parameters of the cotangential transfer orbit and the moduli of the velocity increments on the
parameters of the specified orbits have been found. The formulae obtained can be used for any transfer between coplanar elliptic and
circular orbits.

It is clear from relations (20) - (22) that, for each point of contact S1 of the excentres of the initial and transfer orbits, which is determined
by the value of the angle of rotation � of the radius O1S1 of the initial excentre, determinate values of the velocity increments �V1 and
�V2 and of the total velocity increment �V� exist for a cotangential transfer. Note that the problem of minimizing the fuel consumption
is equivalent to minimizing of the total velocity increment.

It is obvious that, in order to find the optimal flight orbit between the specified elliptic orbits, it is necessary to find the point M1 on the
initial orbit for which minimum energy consumption is required for the corresponding cotangential transfer.

The dependence of the total velocity increment on the angle � for

is shown in Fig. 6. It can be seen that the total velocity increment has a minimum when � = 7�/4.
The algorithm developed is suitable for every pair of coplanar elliptic orbits, depending on the parameters a1,c1,a2,c2 of these orbits

and their mutual orientation, which is determined by the angle � between their major axes. The specified orbits can touch, intersect or
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not have common points, and they can be coaxial or non-coaxial. In special cases, they can be circles. Here, there is no value for which, in
the case of non-intersecting orbits, the local curve (the geometric locus of the second foci of the cotangential transfer orbits) is an ellipse
and, in the case of intersecting orbits, a hyperbola. This is due to the fact that only their foci, that is, the second foci of the specified orbits
and the circles of the excentre and deferent of the local curve, appear in the algorithm, which are the same for both cases.

The proposed algorithm for determining the parameters of the trajectory of the cotangential flight was modelled and tested using the
Mathcad suite of programs. The results obtained confirmed the reliability of the algorithm and the formulae obtained.

References

1. Okhotsimskii DYe, Sikharulidze YuG. Fundamentals of the Mechanics of Space Flight. Moscow: Nauka; 1990.
2. Appazov RF, Sytin OG. Methods for Constructing the Trajectories of Spacecraft and Satellites. Moscow: Nauka; 1987.
3. Ivashkin VV. Optimization of Space Manoeuvres with Constraints on the Distances to Planets. Moscow: Nauka; 1975.
4. Il’in VA, Kuzmak GYe. Optimal Flights of Spacecraft with High Thrust Motors. Moscow: Nauka; 1976.
5. Alekseyev KB, Bebenin GG, Yaroslavskii VA. The Manoeuvrability of Spacecraft. Moscow: Mashinostroyeniye; 1970.
6. Lawden DF. Optimal Trajectories for Space Navigation. L: Butterworths 1963.
7. Ehricke K.A. Space Flight, L. etc.: Van Nostrand, 1962.
8. Adamyan VG. Almagest-2. A Geometric Theory of Gravitation. Yerevan: GASPRINT; 2004.
9. Argunov BI, Balk MB. Geometrical Constructions in a Plane. Moscow: Uchpedgiz; 1955.

Translated by E. L. S.


	Double-pulse cotangential transfers between coplanar elliptic orbits
	References


